N ov 2 00 7 Socles of Buchsbaum modules , complexes and posets
نویسنده
چکیده
The socle of a graded Buchsbaum module is studied and is related to its local cohomology modules. This algebraic result is then applied to face enumeration of Buchsbaum simplicial complexes and posets. In particular, new necessary conditions on face numbers and Betti numbers of such complexes and posets are established. These conditions are used to settle in the affirmative Kühnel’s conjecture for the maximum value of the Euler characteristic of a 2k-dimensional simplicial manifold on n vertices as well as Kalai’s conjecture providing a lower bound on the number of edges of a simplicial manifold in terms of its dimension, number of vertices, and the first Betti number.
منابع مشابه
Socles of Buchsbaum modules, complexes and posets
The socle of a graded Buchsbaum module is studied and is related to its local cohomology modules. This algebraic result is then applied to face enumeration of Buchsbaum simplicial complexes and posets. In particular, new necessary conditions on face numbers and Betti numbers of such complexes and posets are established. These conditions are used to settle in the affirmative Kühnel’s conjecture ...
متن کاملN ov 2 00 6 SIGNED DIFFERENTIAL POSETS AND SIGN - IMBALANCE
We study signed differential posets, a signed version of Stanley’s differential posets. These posets satisfy enumerative identities which are signed analogues of those satisfied by differential posets. Our main motivations are the sign-imbalance identities for partition shapes originally conjectured by Stanley, now proven in [3, 4, 6]. We show that these identities result from a signed differen...
متن کامل1 9 N ov 2 00 4 Lattices of lattice paths ∗
We consider posets of lattice paths (endowed with a natural order) and begin the study of such structures. We give an algebraic condition to recognize which ones of these posets are lattices. Next we study the class of Dyck lattices (i.e., lattices of Dyck paths) and give a recursive construction for them. The last section is devoted to the presentation of a couple of open problems.
متن کاملEnriched homology and cohomology modules of simiplicial complexes
For a simplicial complex on {1, 2, . . . , n} we define enriched homology and cohomology modules. They are graded modules over k[x1, . . . , xn] whose ranks are equal to the dimensions of the reduced homology and cohomology groups. We characterize Cohen-Macaulay, l-Cohen-Macaulay, Buchsbaum, and Gorenstein∗ complexes , and also orientable homology manifolds in terms of the enriched modules. We ...
متن کاملN ov 2 00 7 The classification of Z − graded modules of the intermediate series over the q - analog Virasoro - like algebra ∗ ∗
In this paper, we complete the classification of the Z-graded modules of the intermediate series over the q-analog Virasoro-like algebra L. We first construct four classes of irreducible Z-graded L-modules of the intermediate series. Then we prove that any Z-graded L-modules of the intermediate series must be the direct sum of some trivial L-modules or one of the modules constructed by us.
متن کامل